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We introduce a new Monte Carlo algorithm for the self-avoiding walk (SAW), 
and show that it is particularly efficient in the critical region (long chains). We 
also introduce new and more efficient statistical techniques. We employ these 
methods to extract numerical estimates for the critical parameters of the SAW 
on the square lattice. We find 

# = 2.63820 • 0.00004 __. 0.00030 

= 1.352 i 0.006 _+ 0.025 

v = 0.7590 • 0.0062 _+ 0,0042 

where the first error bar represents systematic error due to corrections to scaling 
(subjective 95% confidence limits) and the second bar represents statistical 
error (classical 95% confidence limits). These results are based on SAWs of 
average length ~ 166, using 340 hours C P U  time on a CDC Cyber 170-730. We 
compare our results to previous work and indicate some directions for future 
research. 

KEY WORDS: Self-avoiding walk; polymer; lattice model; critical 
exponents; Monte  Carlo; algorithm; maximum-likelihood estimation. 

1. I N T R O D U C T I O N  

The self-avoiding walk (SAW) was first proposed nearly half a century ago 
as a model of a polymer molecule with excluded volumeJ 1-3) Since then it 
has been studied extensively by chemical physicistsJ 4-6) More recently, the 
SAW has been shown to be equivalent to the N =  0 case of the N-vector 
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model, (7-11) a fact which has made it an important test case for the theory 
of critical phenomena. 

In this paper we wish to make a modest contribution to the numerical 
study of the critical (i.e., long-chain) behavior of SAWs by the Monte 
Carlo method. Our aim is threefold: (1) to introduce a new and highly 
efficient algorithm for the Monte Carlo generation of SAWs, (2) to 
introduce new and more efficient statistical techniques for the analysis of 
the Monte Carlo data, and (3) to employ these methods to extract 
numerical estimates for the critical temperature and critical exponents of 
the SAW. 

Let us explain each of these aspects in greater detail. 
Our algorithm is a dynamic Monte Carlo algorithm which generates 

SAWs in a grand canonical ensemble. It is inspired by, and closely related 
to, both the "slithering-snake" (reptation) algorithm of Kron, Wall, and 
Mandel (12-~5~ and the "chain-deformation" algorithm of Berg, Foerster, 
Aragfio de Carvalho, Caracciolo, and Fr6hlich. (16'17'11/Nevertheless, it has 
important advantages over both of these previous algorithms: it is ergodic, 
unlike the slithering-snake algorithm(13'14); and it has an autocorrelation 
time (measured in elementary computer operations) of order ( N )  2 (here 
( N )  is the average number of steps in the chain), as opposed to order 
( N )  3 or greater for all known algorithms of chain-deformation type (18'19) 
(see footnotes 2 and 3). It is this latter fact which makes the new algorithm 
vastly more efficient in the critical region (large N) than most previous 
SAW algorithms. In fact, as we explain in Section 3, the new algorithm 
makes feasible high-precision Monte Carlo studies of critical behavior for 
the SAW, with an efficiency exceeding that of comparable Ising-model 
studies by a factor which grows rapidly as one plunges deeper into the 
critical region. We thus argue that the SAW is a uniquely advantageous 
"laboratory" for Monte Carlo studies of critical phenomena. The numerical 
results for the two-dimensional SAW reported in the present paper are 
intended as an initial illustration of this assertion; some directions for 
future work are discussed in Section 6.2. 

The algorithm introduced here is also closely related to an algorithm 
of Redner and Reynolds(2~ we discuss the rather subtle relation between 
the two algorithms in Section 3. The Redner-Reynolds algorithm is, like 
ours, a grand-canonical algorithm; the two algorithms appear to be of 
approximately equal efficiency. 

2 Beware: Much of the literature measures time in "bead cycles." One bead cycle equals N 
(or N + 1) elementary computer operations. 

3 A more detailed comparison with previous algorithms will appear in a separate paper/~9) 
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Our second goal in this paper is to introduce new statistical techniques 
for the analysis of SAW Monte Carlo data. In particular, we show how 
maximum-likel ihood estimation can be employed to provide estimates of the 
critical quantities # and 7 which are not only demonstrably optimal in a 
rigorous (or almost rigorous) statistical sense (i.e., they achieve the 
minimum possible mean-square error for a given quantity of Monte Carlo 
data), but which also provide a priori (or partially a priori) error estimates. 
This means that statistical errors can be computed reliably, in advance of 
performing the Monte Carlo simulation. Or to put it more strikingly: 
before performing the simulation, one cannot know what the final central 
estimates will be, but one can know the error bars! We believe that this is a 
significant advance. It is, to be sure, made possible by the particularly sim- 
ple scaling form arising in the SAW [Eq. (2.1)], and so the method is not 
immediately applicable to Monte Carlo studies of other models; but we 
hope that this example will spur other workers to meditate more carefully 
on their statistical techniques and to invent clever new ones. 

More generally, we have tried in this paper to take especial care in our 
statistical analysis, stressing those issues which we feel have been given 
short shrift in previous work. Such care, while obviously desirable in all 
cases, 4 is an absolute necessity in Monte Carlo studies as delicate as those 
of critical phenomena. In particular, we wish to emphasize two points: 

(1) The importance, in any work employing a dynamic Monte Carlo 
algorithm, of a correct statistical treatment of autocorrelations and their 
effects. This should include a theoretical (i.e., pre-simulation) study of the 
autocorrelation function to the extent that this is possible; it should in any 
case include a thorough empirical (i.e., post-simulation) statistical analysis, 
including statistically valid error bars. 5 We hope that our brief discussion 
in Section 4.1 will make the statistics literature on time-series analysis more 
widely known to physicists engaged in Monte Carlo work. 

(2) The distinction between systematic errors (errors resulting from 
misspecification of the mathematical model on which the data analysis is 

4 As Wood and Erpenbeck Izl~ note, "these [Monte Carlo] investigations share some of the 
features of ordinary experimental work, in that they are susceptible to both statistical and 
systematic errors. With regard to these matters, we believe that papers should meet much the 
same standards as are normally required for experimental investigations. We have in mind 
the inclusion of estimates of statistical error, descriptions of experimental conditions (i.e., 
parameters of the calculation), relevant details of apparatus (program) design, comparisons 
with previous investigations, discussion of systematic errors, etc. Only if these are provided 
will the results be trustworthy guides to improved theoretical understanding." 

5 For the new algorithm proposed here, the theoretical part of this analysis is carried out in 
Section 3 and Appendix A; the empirical part is carried out in Section 5.2, using the 
methods described in Section 4.1. 
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based, e.g., due to unincluded corrections to scaling) and statistical errors 
(the random fluctuation inherent in any probabilistic experiment). The two 
types of errors play very different roles and must be treated separately 
(something which naive least-squares curve-fitting fails to do). The treat- 
ment of corrections to scaling is difficult and subtle--and we ourselves have 
not been entirely successful (compare Sections 5.3 and 5.4)--but it is 
unavoidable in any quantitative study of critical behavior, whether by 
Monte Carlo or any other method. 

The plan of this paper is as follows: In Section 2 we review briefly 
those facts and conjectures about the SAW that will be needed in the 
remainder of the paper. In Section 3 we introduce the new algorithm and 
analyze some of its properties. In Section 4 we describe the statistical 
techniques needed for the data analysis. In Section 5 we present our 
numerical results for the two-dimensional SAW. In Section 6 we compare 
our results with previous work and indicate some directions for future 
work. In Appendix A we present an exact solution of the dynamics of our 
algorithm for the case of ordinary random walk. In Appendix B we prove a 
spectral representation for the autocorrelation function of a reversible 
Markov chain. In Appendix C we discuss briefly some computer-program- 
ming considerations which arise in Monte Carlo studies of SAWs. 

2. THE SELF-AVOIDING WALK (SAW) 

In this section we review briefly the basic facts and conjectures about 
the SAW that will be used in the remainder of the paper. Let 5 ~ be some 
regular d-dimensional lattice. Then an N-step self-avoiding walk (SAW) co 
on 5O is a sequence of distinct points co(0), co(l) ..... co(N) in 5O such that 
each point is a nearest neighbor of its predecessor. Unless stated otherwise, 
we assume all walks to begin at the origin, i.e., ~o(0)= 0. 

Let Cu [respectively, CN(X)] be the number of N-step SAWs starting at 
the origin and ending anywhere (respectively, ending at x). These quan- 
tities are believed to have the asymptotic behavior 

CN~NN~,  1 (2.1) 

CN(X ) ~ tlUN~si,g- 2 (X f i x e d  r 0) (2.2) 

as N--* oe. 6'7 Here # is called the connective constant (or effective coor- 

6 On certain lattices, (2.2) requires a proviso: e.g., on the d-dimensional simple cubic lattice, N 
must  be taken to have the same parity mod 2 that x does, since otherwise cu(x) = 0. But this 
is a trivial restriction. 

7 The subscript "sing" is attached because the exponent defined in (2.2) is analogous to the 
exponent for the singular part of the specific heat in a spin model. For example, for d >  4 one 
expects gsing = 2 - d/2 < 0. See (2.9). 
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dination number) of the lattice 2' ,  and is lattice-dependent; ~ and 0~sing a r e  

critical exponents, and are believed to be universal for lattices of a given 
dimension d. 

The mean-square end-to-end distance 

(co(N)2) ___1~ [xl2 CN(X) (2.3) 
CN x 

is believed to scale as 

(co(N) 2 } ~ N 2v (2.4) 

as N ~ o% where v is another (universal) critical exponent. More generally, 
the full probability distribution of co(N) is believed to scale as 

CN(X) ~ N-d~ f ( x / N  ~) (2.5) 
CN 

as N ~  o% for a suitable scaling function f (also universal up to trivial 
changes of scale). Moreover, f is expected to be rotation-invariant. 
[Actually, (2.5) is only claimed to hold for Ixl on the order of N v. The 
precise statement of (2.5) is therefore that the limit 

f (y)=- lira N dv cN(N~Y) (2.6) 
N ~  oo C N 

exists for each y r 0, with 0 < f ( y )  < ~ . ]  
Finally, let CNI,N 2 be the number of pairs (col, 0)2) such that o9 l is an 

N~-step SAW starting at the origin, co2 is an N2-step SAW starting 
anywhere, and col and o92 have at least one point in common (i.e., 
col c~ o92 r ~ ) .  (This quantity is closely related to the osmotic second virial 
coefficient for polymer molecules.) Then is it believed that 

C H N I + N 2  N2214+ 
NI,N2 ~ I ~ 7--2g(N1/N2 ) (2.7) 

as N1, N 2 ~ o% where A 4 is yet another (universal) critical exponent and g 
is a (universal) scaling function. 

We remark that the above-defined critical exponents for the SAW are 
precise analogues of the critical exponents defined for spin systems. (22) 
Indeed, the "susceptibility," "two-point correlation function," and "connec- 
ted four-point function at zero momentum" defined by 

N = O  
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G(x; fl)=- ~ ~NCN(X ) (2.9) 
N=0 

~4(]~) ~ -  ~ fl NI+N2cN,,N: (2.10) 
N1,N 2 = 0 

are equal to the corresponding quantities in the N-vector  model  at inverse 
temperature fl, analytically continued to N =  0. {9 11) The critical inverse- 
temperature is tic = 1/#. [Note ,  however, the clash of terminology: in the 
polymer language, (2.8)-(2.10) define a grand canonical ensemble at 
monomer  activity fl; in the spin-system (or field-theory) language, 
(2.8)-(2.10) define a canonical ensemble at inverse temperature ft.] 

Thus, one can pose for the SAW questions analogous to those posed 
in the theory of critical phenomena  in lattice spin systems. In  particular, 
one can study the conjectured hyperscaling relations 

and 

dv = 2 - ~sing (2.1 1 ) 

dv - 2A 4 + 7 = 0 (2.12) 

The latter has a particularly clear heuristic interpretation: Let p(N) be the 
probabili ty that  two N-step SAWs, one starting at the origin and the other 
starting a distance of order  N v away from the origin, intersect each other; 
then (2.12) holds ifp(N)~> c > 0 as N ~  oo. Hyperscaling thus concerns the 
probabili ty of intersection of two independent SAWs. 8 In this paper  we 
shall not  in fact study (2.11) or (2.12)--we limit at tention to #, 7, and 
v - -bu t  we ment ion the hyperscaling problem because it is one of the most  
impor tant  open problems in the theory of critical phenomena,  and because 
it was the main mot ivat ion for the present work. In future work we plan to 
apply our  Monte  Carlo method to study 34 in dimension d =  3. 

Few rigorous results are known  for the SAW. Hammers ley  (28'29~ has 
proven a very weak form of (2.1)/(2.2), namely, that  the limits 

# =  lim t"l/U lim C N ( X )  1/N (2.13) ~N z 

exist and are equal. Slightly stronger results are due to Kesten. {3~ Some 
rigorous upper and lower bounds  on # are known. (32) Aizenman's  {33) p roof  

8 The analogous problem for ordinary random walks has been solved by the combined work 
of Erd6s and Taylor t23) and Lawler. (24) These results have recently been rederived by Felder 
and Fr6hlich (25) and by Aizenman, (26) using an elegant rigorous version of the field-theoretic 
renormalization group. The intersection properties of M independent ordinary random 
walks can be related (27) to the N --, 0 limit of a model of M coupled N-component fields. 
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of hyperscaling for the two-dimensional Ising model extends immediately 
to prove the "difficult" half of (2.12), i.e., d v - - 2 A 4 - ] - ~ O  , for the two- 
dimensional SAW. (This is our reason for not undertaking a Monte Carlo 
study of /I  4 in d =  2.) One of the authors (34) has proven for the SAW a 
strengthening of the Aizenman-Fr6hlich (33,35,11,36) correlation inequality; it 
follows from this result that 

and hence that the hyperscaling relation (2.12)fails whenever dv > 2. [-This 
makes rigorous one half of an appealing intuitive argument due to des 
Cloizeaux(37): by (2.4)/(2.5) one expects a single long SAW to act like an 
object of "fractal dimension ''(38) l/v; so two independent such objects 
should intersect "generically" if and only if the dimension d of the ambient 
space is less than or equal to 1Iv+l/v, i.e., if dv<~2.] Very recently, 
Brydges and Spencer (39) have proven 7=  1 and v=  1/2 for a slightly 
modified SAW in dimension d >  4, using rigorous renormalization-group 
methods. 

The hyperscaling problem for the SAW (like other models) in dimen- 
sion 2 < d <  4 appears, therefore, to be inaccessible to currently available 
rigorous methods. For this reason we turn to Monte Carlo. 

3. N E W  M O N T E  C A R L O  A L G O R I T H M  FOR 
T H E  S E L F - A V O I D I N G  W A L K  

In this section we describe a new Monte Carlo algorithm for the self- 
avoiding walk, and discuss some of its properties. A detailed comparison 
with other SAW Monte Carlo algorithms can be found in a separate 
paper. (19) 

Our algorithm generates SAWs with one endpoint anchored at the 
origin and the other endpoint free, in a grand canonical ensemble at 
monomer activity /3. Thus each N-step SAW has probability /3N/~(/3) of 
occurring in the ensemble, where 

2(/3)= ~ /3Nc N (3.1) 
N - - 0  

is the grand partition function. 9 The algorithm is a dynamic Monte Carlo 
algorithm: that is, it is a stochastic (in fact Markovian) dynamics which 
has the desired ensemble as its unique equilibrium probability distribution. 

9 Note that from the spin-system point of view Z(//) is the susceptibility; cf. (2.8). 
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The algorithm's "elementary moves" are as follows: either one attempts to 
append a new bond to the walk, with equal probability in each of the q 
possible directions (here q is the coordination number of the lattice); or 
else one deletes the last bond from the walk. In the former case, one must 
check that the attempted new step does not violate the self-avoidance con- 
straint; if it does, then the attempted move is rejected and the old con- 
figuration is counted again in the sample (a "null transition"). If an attempt 
is made to delete a bond from an already-empty walk, then a null trans- 
ition is also made. The relative probabilities of A N =  +1 and A N =  - 1  
attempts are chosen to be 

P(AN= +1 a t t e m p t ) -  1 + qfl (3.2) 

1 
P(LJN= --1 a t t e m p t ) -  1 + qfi (3.3) 

It follows that the transition probability from a walk co to a walk co' is 
given by 

where 

p ( ( / )  ~ (D r ) = 

ZSAW(CO ) if co -< 09' 

1 
if 09' -< co or 09 = 09' = ~ (3.4) 

1 +q/~ 

1-+-~qflA(09) if = 0 9 ' #  09 

ZSAW( ) =  
if 09' is an SAW 

(3.5) 
if 09' is not an SAW 

Here co < co' denotes that the walk co' is obtained by appending one bond 
onto the end of 09; and A(09) is the number of non-self-avoiding walks co' 
with co < 09'. It is easily verified that (3.4) satisfies the detailed-balance con- 
dition for the grand canonical ensemble with monomer activity fi: that is, 

~(09) p(09 --, co') = ~(09') p(09' --, 09) 

for all walks 09, co', where 

fll~Jl 
~(091 = 2(-~5 Xsaw(09) 

(3.6) 

(3.7) 
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and ]coj is the number of bonds in the walk co. The detailed-balance con- 
dition (3.6) ensures that the probability distribution (3.7) is a stationary 
distribution for the Markov process defined by (3.4). To ensure that it is 
the unique stationary distribution, it suffices to verify that the process (3.4) 
is ergodic, i.e., that one can get from any SAW co to any other SAW co' by 
a finite sequence of allowed moves. But this is easy: one simply uses the 
AN = - 1  moves to "eat up" all the bonds of the walk co until the empty 
walk ~ is reached, and then uses the AN= + 1 moves to build up step-by- 
step the walk co'. From the detailed-balance and ergodicity conditions it 
then follows, by the general theory of Markov chains, (4~ that the 
occupation-time distribution over a long time interval converges with 
probability 1 to the equilibrium distribution ~, irrespective of the initial 
state. In fact, since the process (3.4) is aperiodic, the probability dis- 
tribution at any single time in the far future also converges to ~. Thus, 
simulation of the Markov process defined by (3.4) provides a legitimate 
Monte Carlo method for estimating averages with respect to m 

The successive states in this Markov process are, of course, highly 
correlated; it takes a while for the process to "lose memory" of its current 
configuration. This means that the variance of Monte Carlo estimates 
produced by the dynamic algorithm may be much higher than would be 
the case if one could produce independent samples from the distribution Jz. 
Crudely speaking, successive blocks of data of width ~2z can be con- 
sidered to be "effectively independent", where r is the autocorrelation time 
(in equilibrium) of the dynamic process. (A more rigorous discussion is 
given in Section 4.1.) It is thus of some importance to know how big z is. 
We argue that, in the process defined by (3.4), 

~ ( N )  ~ (3.8) 

To see this, consider the quantity N(t)= [col(t), the number of bonds in the 
walk at time t. This quantity executes, crudely speaking, a random walk 
(with drift) on the nonnegative integers; the average time required to go 
from some point N to the point 0 (i.e., the empty walk) is of order N 2. 
Moreover, each time the empty walk is reached, all memory of the past is 
erased; future walks are then independent of past ones. Thus, the 
autocorrelation time ought to be of order (N2) ,  or equivalently ( N )  2. 
This is borne out by an exact solution of the dynamics for the case of the 
ordinary random walk (Appendix A) and by our Monte Carlo results for 
the SAW (Section 5.2). The dynamic critical exponent in (3.8) is the same 
as in the slithering-snake (reptation) algorithm, (12 15) and less than in all 
other known dynamic Monte Carlo algorithms for the 8AW(11'17'18); for 
further discussion, see Ref. 19. 
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One may thus obtain an ensemble of SAWs o f  any desired average 
length by choosing/3 appropriately, with 

1 
0~<p</~c = -  (3.9) 

# 

For/3 near to/3c we have, by (2.1), 

Z~=o N~Uc~ P~ 
( N )  = ~ N ~ - -  (3.10) 

ZN=0/~ CN ~c'--~ 

In Section 4 we discuss how to obtain valid statistical estimates of #, y and 
v from such an ensemble. 

Remarks.  (1) The foregoing algorithm can be made slightly more 
efficient by restricting the A N =  +1 attempts to those bond directions 
which are not immediate reversals of the preceding bond. See Ref. 19 for 
details. In the present paper we do not make use of this improvement. 

(2) The foregoing algorithm is closely related, but not identical, to 
the algorithm of Redner and Reynolds. (2~ Both algorithms generate SAWs 
in a grand canonical ensemble with one free end point. However, the con- 
ceptual foundations of the two algorithms are quite different. The present 
algorithm is of "dynamic" type, i.e., it generates a sample from an 
asymptotically stationary stochastic process over the space of all SAWs. By 
contrast, the Redner-Reynolds algorithm is most naturally thought of as a 
stochastic generalization of exact enumeration, in which each step in the 
"decision tree" is taken with probability p < 1 (for p -- 1 it reduces to exact 
enumeration). Thus, run for an integer number of "full cycles," the Red- 
net-Reynolds algorithm generates a sample consisting of independent 
batches of SAWs, with the correlations among the SAWs within a batch 
being quite complicated (and not necessarily those of an asymptotically 
stationary stochastic process). Such an algorithm is said to be of 
"quasistatic" type. In fact, the Redner- Reynolds algorithm can alternatively 
be viewed C19~ as a variant of the s =  1 special case of the enrichment 
algorithm, (41) which is likewise of quasistatic type. Nevertheless (as we dis- 
covered after the completion of this work), it is possible to give the Red- 
ner-Reynolds and enrichment algorithms yet another (though less natural) 
interpretation, in this case as a dynamic algorithm over a larger state space; 

see Ref. 19 for details. The upshot is that all three algorithms are somewhat 
related; in particular, the Redner-Reynolds and enrichment algorithms 
probably share the order-N 2 computation time which is characteristic of 
the algorithm described here. We find the Redner-Reynolds algorithm 
quite interesting and deserving of further study. (We thank Sid Redner for 
helpful conversations and correspondence on these points.) 
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(3) It is perhaps worth comparing our algorithm for the SAW to the 
standard single-spin-flip Metropolis (or heat-bath) algorithm for the Ising 
model. Both algorithms have fairly simple, hence rapidly executed, elemen- 
tary moves. Monte Carlo simulations of spin systems must contend with 
finite-size effects. To avoid severe systematic errors, one must take L>~,  
where L is the linear size of the system and ~ is the correlation length in an 
infinite-volume system at the same temperature. One can then use finite- 
size scaling theory (42) to extrapolate the results to L =  0% but this 
extrapolation is extremely delicate (one must allow, for example, for 
corrections to scaling) and significant systematic errors are likely to 
remain. Moreover, the standard dynamic algorithms exhibit critical slowing 
down: the autocorrelation time diverges as %hys,--min(L, ~)z, where z is a 
dynamic critical exponent (z~2 for the usual kinetic Ising model in all 
dimensions~43'44~). Thus, one must sweep a lattice of >~a sites about ~z 
times in order to obtain one independent data point, i.e., r>~d+~ when 
measured in elementary computer operations. [The proportionality con- 
stant in this relation can be reduced by a factor of 10 or more by clever 
computational methods such as multispin coding, ~45~s) but the underlying 
~-dependence remains the same.] In the self-avoiding walk, by contrast, 
there are no finite-size effects whatsoever: the simulation operates directly 
on the infinite-volume system.l~ (This is a general property of most SAW 
Monte Carlo algorithms, not only ours; it is inherent in the nature of the 
SAW as compared to spin systems.) There is, to be sure, critical slowing 
down; in our algorithm we have, by (3.8) and (2.4), 

~ ~  ( N ) 2 ~ ~  2Iv (3.11) 

In Table I we compare the dynamic critical exponents for the Ising model 
and the SAW for dimensions d=  2, 3, 4. It is seen that the SAW has a 
significant advantage which grows rapidly as one plunges deeper into the 
critical region (4 --* ~)11: e.g., for d =  3 and ~ 5 0 ,  the advantage is a factor 

~0 Of  course, since computer  words are of finite length, one is really simulating the SAW in 
some large but finite box (with, say, periodic boundary conditions). But it is easy to arrange 
for this box to be so large that its boundaries are never  touched in the course of thousands 
of hours of simulation; in that case one has in fact simulated the infinite-volume SAW, with 
no finite-volume effects whatsoever. 

11 Such a statement requires, of course, a s tandard of comparison, between two different 
models, of "how deep one is into the critical region." What  is ultimately of interest is how 
close one has come to attaining the true asymptotic critical behavior; but this depends on 
correction-to-scaling exponents and amplitudes for the two models, which are difficult to 
estimate a priori.  As a naive first approximation, we believe that the correlation length ~, 
measured in units of the interaction range (here equal to one lattice spacing for both 
models), is a reasonable s tandard of comparison. 
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Table I. Comparison of Autocorrelation Times r for 
Ising-Model and Self-Avoiding-Walk Dynamic 

Monte Carlo Algorithms 

Ising model Self-avoiding walk 
(Metropolis (our algorithm) a 
algorithm) ~ 

d = 2 ~ r ~4.1 ~ r ,~z7 
d=3 ~ 5 . 1  ~ 3 . 4  
d=4 ~ 6  ~4 

a ~ is the correlation length, measured in lattice spacings. 

of ~ 1000. This is, to be sure, a very crude est imate which neglects the 
possibly differing propor t ional i ty  constants.  But the quali tat ive conclusion 
is, we believe, inescapable: the SAW is a uniquely advantageous laboratory 
for undertaking Monte Carlo studies of critical phenomena.12 

4. S T A T I S T I C A L  M E T H O D S  

In this section we discuss statistical procedures  for analyzing the 
Monte  Car lo  da ta  produced  by the a lgor i thm of Section 3. We assume that  
the reader  has a good  background  in mathemat ica l  statistics; the topics 
used here include time-series analysis, maximum-l ike l ihood  est imation,  
least-squares est imation,  and confidence sets. An excellent exposi t ion of all 
these topics except time-series analysis can be found in the brief book  of 
Silvey(S2); other  good sources are the books  of Cram6r,  (53) Fisz, (s4) 
Wilks, (55/Lindgren, (56) and  Kendal l  and Stuart. (Sv) An excellent exposit ion 
of time-series analysis can be found in the book  of Priestley(58); other  good  
sources are the books  of Anderson (s9) and Jenkins and Watts.  (6~ 

4 .1 .  A u t o c o r r e l a t i o n s  

Suppose that  we run the Mon te  Car lo  a lgor i thm of Section 3 for a 
t ime n, s tart ing f rom an initial SAW configurat ion ~oo; we then obtain  a 
r a n d o m  sequence of SAWs c01,..., ~on. These SAWs are, of course, highly 
correlated; in this section we show how to obta in  quant i ta t ive  statistical 

12 At least until someone invents a radically better algorithm for the Ising model. For some 
recent attempts in this direction, see Refs. 49-51. 
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estimates of this autocorrelation. Knowledge of the autocorrelation is an 
indispensable prerequisite for correct statistical analysis of the Monte Carlo 
data. 

As noted in Section 3, it follows from the general theory of Markov 
chains ~~ that the probability distribution of o~t converges as t ~ oo to the 
stationary distribution (3.7), irrespective of the initial state ~o o. Thus, the 
Markov chain is an asymptotically stationary stochastic process; and if we 
choose to sufficiently large, then the observations ~o~0 + 1,..., ~o, can be con- 
sidered for all practical purposes to come from a stationary stochastic 
process (i.e., this "thermalizes" the system). We shall thus consider the 
general question of how to estimate the autocorrelation function of a 
stationary stochastic process; at the end of this section we shall return to 
the important question of how to choose to. 

Let A = A(~o) be some real-valued observable, and let A, = A(~ot); then 
the sequence A~,..., A, is a sample from a real-valued stationary stochastic 
process {At}. That  process has a mean value 

#A --= ( A t )  

and an autocorrelation function 13 

CAA(S)- ~A,; A,+s) =- ~AtA,+s) - # 2  

(4.1) 

(4.2) 

both of which we assume to be finite. (They are independent of t, by 
stationarity.) We shall consider the following statistical estimation 
problems: 

(a) The mean #A is unknown to us, and we wish to estimate it using 
the sample data A1 ..... A,. The autocorrelation function C.~A(s) may be 
either known or unknown. 

(b) The autocorrelation function CAA(S ) is unknown to us, and we 
wish to estimate it using the sample data A1 ..... A,.  The mean #A is 
assumed to be known. 

(c) Same as (b), but the mean #A is assumed to be unknown. 

The analysis of problem (a) is well known in the physics literature 
(see, e.g., Refs. 61 and 62); we include it here for the sake of completeness. 
The analysis of problems (b) and (c) appears to be less well known in the 
physics literature, although some partial discussions have appeared) 63'64/ 
Here we will only summarize the results of the analysis; more detailed 

13 In the statistics literature, CAA(S) is called the autocovariance function, and 
p(S)=--CAA(s)/CAA(O) is called the autocorrelation function. We shall adhere to the 
physicists' terminology. 
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treatments can be found in the textbooks on statistical time-series 
analysis.(S8 60) 

The "natural" solution to problem (a) is to estimate the population 
mean #A by the sample mean 

n 

~---~,Z=I A~ (4.3) 

This estimator is unbiased, i.e., ( . ,~)=#A for any stationary stochastic 
process. Its variance is 

1 ~ CAA( i - - j )  Vat(A) = ~-7. 
~ , j =  1 

= -  y~  1 - C A A ( s )  
n s = - ( n  - 1 ) 

1 

~ls= o:3 

(4.4a) 

(4.4b) 

[The approximation in (4.4b) is valid for n>~'CAA , where "CAA is a typical 
"decay time" of the function CA~(S).] Clearly, then, the accuracy of A as an 
estimator of #A depends on the autocorrelation function CAA(S); the 
variance of A is a factor 

s -  Zs~ -oo c ~ ( s )  
CAA(O) (4.5) 

larger than it would be if the {Ai} were independent. For example, if 
CAA(S ) = const x exp(-[sl/72AA ) (this is often a close approximation to the 
actual behavior), then 

2 
S =  1 - e  -I/~AA 1 (4.6a) 

~2ZAA if " C A A ~ I  (4.6b) 

Thus, even if we are interested only in the static quantity #~, it is necessary 
to estimate the dynamic quantity CAA(S ) in order to determine valid error 
bars for #A' 

The "natural" estimator for CAA(s) is 

1 n Ish 

CAA(S) =- n -- Isl t ~  (A, - #A)(A~+ Isl -- #A) (4.7) 
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if the mean #A is known, and 

1 , -Isl 
CA~(S ) -n_ l s  I ~" (A,- -A)(A,+I , I -A)  (4.8) 

t = l  

if the mean #A is unknown. We emphasize the conceptual distinction 
between the autocorrelation function CAA(S), which for each s is a number, 
and the estimator CAA(S) or ~AA(S), which for each s is a random variable; 
as will become clear, this conceptual distinction is also of practical impor- 

tance. CAA(S) is an unbiased estimator of CAA(s), and ~AA(S) is almost 
unbiased (the bias is of order l/n) (Ref. 59, p. 463). Their variances are 
(Ref. 59, pp. 464-471) 

Var((~AA(s)) _ 1 ~ [CAA(t) 2 q- C A A ( t  - -  S) CAA(t + S) 
n-tsl, . . . .  

+ ~ c ( I s I , - t ,  IsI-t)]+O(n@lsi ) (4.9) 

and 

Var((AA(S)) = same thing + o ( n _ ~ l  Lsl) (4.10) 

where ~c is the connected 4-point autocorrelation function 

K(r, s, t)=-- ( (At-- #A)(A,+r-- #A)(Ai+,--#A)(Ai+,-- #A) ) 

- C,4A(r) CAA(t--S)- CAA(S) CAA(t--r)-- CAA(t) CAA(S--r) 
(4.11) 

For example, if CA~(S) = const x exp(--Isl/'cA~) and ~:(r, s, t) = 0 (this is 
often a decent approximation to the actual behavior), then we have 
(assuming ZAA >> 1 for simplicity) 

Var(CAA(s))~ rAA CAA(O) z l + e  21sl/zAA 1-I- 
n -- [sl r,~A/A 

o 1 

and hence 

ZAA CAA(0) 2 < Var(CA~(S)) < 2zaA CAA(O) 2 
n /7 

(4.13) 
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A 

Of course, these formulas give the variance of CAA(S) or  CAA(S) in terms of 
the unknown quantity which we are trying to estimate, namely, CAA(S) (or 
~AA), as well as the further unknown quantity •(r, s, t). This is not an 
entirely satisfactory situation. Nevertheless we may proceed heuristically as 
follows: Usually we will have some vague prior knowledge of the 
autocorrelation time ~AA (or at least an upper bound for it), based on 
theoretical considerations or on past experience. Let us choose, then, a run 
length n which is at least,^say, 100"~AA ; by (4.13) this will ensure that the 
error bars o n  CAA(S) or  CAA(S) are no more than about 20% of CAA(O), 
and hence that one can obtain reasonable estimates of CAA(S ) out to at 
least S~VAA before falling into the noise. This estimate of CAA(S) in the 
region of greatest importance can then be plugged into (4.9)/(4.10) to get a 
more refined estimate of the error bars. This procedure is, of course, 
somewhat circular, but it seems to work well in practice provided that suf- 
ficient data is available (i.e., n >  100"CAA ). AS for K, we usually have little a 
priori knowledge of it: it is identically zero if the process IAt} happens to 
be Gaussian, but we are rarely so lucky. We may have some knowledge 
about the kurtosis of the stationary distribution, i.e., ~(0, 0, O)/CAA(O)2; if 
SO, we could make the plausible guess that •(r, s, t) decays as a function of 
r, s, t more or less like CAA(S ) does, i.e., with decay time ~"CAA , and thereby 
get a crude estimate for the contribution of the K(r,s, t) term to 
(4.9)/(4.10). Or we might just ignore it and hope for the best. 

It is clear from (4.13) that an enormous quantity of data is required if 
one wishes to obtain precise estimates of ZAA or of CAA(S) for S~,~'~AA. 
Luckily, our primary interest is in static quantities such as /~A. We study 
the dynamic quantity CAA(S) only as a preliminary step toward a correct 
statistical analysis of the static quantities; and for this purpose, fairly crude 
estimates of CA~(s) and ~AA are sufficient. The foregoing formulas should 
make clear, however, the severe difficulties involved in Monte Carlo studies 
of dynamic critical phenomena. 

One further remark: We do not claim that the estimators .~, ~AA(S) 
A 

and CA~(s) are the optimal solutions to the estimation problems (a)-(c); 
we claim merely that they are simple and satisfactory. In fact they are not 
optimal; but it would be too long a digression to discuss that question here. 

We also note that subroutines for time-series analysis are available in 
both the IMSL (65) and NAG (66) software libraries. 

We now return to our original problem, in which {A,) is not merely a 
stationary stochastic process but is in fact a function of a reversible Markov 
process. [A Markov process is called reversible (67) if it satisfies the detailed- 
balance condition, in our case (3.6).] In this case the autocorrelation 
function CAA(S) satisfies a spectral representation reminiscent of the 
Kfill6n-Lehmann representation in quantum field theory, namely, 
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f l  dp~(2) (4.14a) C A A ( S )  = --1 2N 

Jo = e -'i'd dp2(a) for s even (4.14b) 

where the spectral weights dpl(2 ) and dp2(a) are positive measures. We 
prove this fact in Appendix B. Here we merely note the following con- 
sequence of (4.14): 

~Aa -- lim --Js[ 
,+ ~ Iog[ C AA(S)/C AA(O ) ] 
s e v e n  

- I s l  
= sup 

. . . . .  Iog[ C AA(S)/C AA(O ) ] 

= [inf supp dp2(a)]  -1 

(4.15) 

Finally, we return to the problem of how much data one must discard 
at the beginning of the run, i.e., how to choose t o . This question can only 
be answered after one has at least a crude estimate (or upper bound) for 
the autocorrelation time r. (Here r is, by definition, the longest relaxation 
time in the system, i.e., the supremum of ZAA over all observables A.) In 
that case one argues as follows: The bias associated with using the sample 
mean 

),  Ai (4.16) 
n - -  t 0 i =  t o +  1 

as an estimator of the stationary-distribution mean value 

/~A - ~ ~z(o)) A(co) (4 .17)  
O3 

is presumably of order 

"C 

b i a s ~ a l  e -'~ (4.18) 
n - -  t o 

with a 1 being most plausibly of order IA(co0)-#Al. On the other hand, the 
standard deviation of this estimator is, from (4.4b)/(4.6b), 

standard deviation ~ a2 
(n - to) 1/2 

(4.19) 

822/40/3-4-9  



500 Berretti  and Sokal 

where a 2 ~ [2"CAA CAA(O)] 1/2 It then suffices to take t o large enough so that 
the bias is negligible compared to the standard deviation, without making 
to so large that the standard deviation increases significantly. This is easily 
accomplished, even if als/a2 nl/2 is enormous: just take to to satisfy, say, 

n 
20~ ~< to <~ ~ (4.20) 

Any value of to in this range is just about as good as any other. We 
emphasize that the most serious problem is not the need to discard some of 
the data at the beginning of the run, i.e., before the process has "reached 
equilibrium"; rather, it is the autocorrelation of the stochastic process in 
equilibrium, which dramatically raises the variance of all estimators. This 
latter problem (unlike the former one) cannot be evaded by tinkering with 
the initial configuration; it is an inherent feature of dynamic Monte Carlo 
methods. It can, however, be ameliorated by inventing new Monte Carlo 
algorithms (i.e., new stochastic processes) with smaller autocorrelation 
time ~. 

4.2. Est imation of p and y 

The algorithm of Section 3 in its stationary distribution produces a 
(correlated) sequence of SAWs col,..., co n each of which is distributed 
according to the grand canonical ensemble at monomer activity/L Thus, 
the corresponding walk lengths N1,..., N~ are distributed according to 

Prob(length = N) = const x flNc N (4.2t) 

From these data we can make inferences about the unknown constants 
{CN}. In particular, our goal is to estimate the parameters # and y defined 
in (2.1). Of course, in a strict sense this is impossible, since (2.1) is an 
asymptotic statement valid as N ~  o% while a Monte Carlo experiment 
concerns only a finite range of N. Thus it is necessary to adopt additional 
assumptions about the behavior of the {CN} if we are to proceed further. 
We begin by adopting the simplest reasonable assumption, namely, that 
the formula 

C N = ] I N N  7 - la o (4.22) 

is exact whenever N is greater than or equal to some cutoff value Nmi n 

(which we can choose later); here kt, 7, and a o are unknown constants. Of 
course, this assumption is manifestly false: (4.22) is only an approximation 
which gets better and better as N gets large. Thus our estimates for I~ and y 
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will likewise be approximations whose accuracy is only as good as that of 
the fundamental assumption (4.22). This error is a systematic error induced 
by corrections to scaling; it adds to the purely statistical error inherent in 
any Monte Carlo_ experiment (and which we shall calculate forthwith). We 
return to the discussion of corrections to scaling at the end of this subsec- 
tion. 

For now we assume that (4.22) is exact for N~> Nm~.. It follows that 
the probability distribution of the walk length N, conditional on it being 
/> N m i n ,  is 

Prob(length = N [ length ~> Nmin) 
(4.23) 

= const(fl#, 7, Nmi~,) x (flt~) N N ~ 1 

Note that a 0 has dropped out of this formula. 
If the N~ ..... N, were independent, then the likelihood of a given 

sequence {N1,...,N~} would be simply the product of the individual 
likelihoods (4.23): 

likelihood = I~ c o n s t ( f l # ,  7, N m i n )  x ( f i ~ ) N i N ~  i - 1 (4.24) 
1 ~<i-G<n 

N i >~ Nmin 

(Here the product is taken only over those i for which N i/> Nmi . ; the walks 
of length <N~i ,  play no role in this analysis.) We would then have a 
parametric-estimation problem for which we could use the method of 
maximum likelihood I52 57) to make statistical estimates of /~ and 7. Of 
course, the N1,..., N~ are far from independent, so it is not immediately 
clear that this approach is justified. We return to this issue at the end of 
this subsection; for now we simply pretend that the N1 ..... N~ are indepen- 
dent. (This could be arranged, for example, by choosing the N~ ,..., N~ to be 
data points spaced in time by, say, 4r; this would ensure that they are "for 
practical purposes" independent. Please note that we are not advocating 
this technique of discarding some of the data; we are only saying that it is 
one possibility which would make our theoretical pretenses almost true.) 

With these caveats, we may proceed to the maximum-likelihood 
analysis. The maximum-likelihood estimates # and o~ are, by definition, 
those values of/~ and y which, for the given data {N1,..., Nn}, maximize the 
likelihood (4.24). Since (4.24) is an "exponential family, ''(5247~ the 
likelihood equations are particularly simple: they say that /~ and ~ are 
determined by the conditions 

(N)~,y = (N)obs (4.25a) 

(log N)~,~ = (log N)ob~ (4.25b) 
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where we have defined the theoretical mean values 

( f(N)) . ,7 - 

a n d  the observed mean values 

( f (N)  }ob~ = 

E~= Nm~o f(N)(fl#) N Nr-1 
E~= Um~. (fl/'t) N N~-~ (4.26) 

Z~ < ,<..m,>~ N~m f(Ni) (4.27) 
~ l  <~i<~n,Ni>~ Nmi n 1 

The equations (4.25a, b) are easily solved numerically for/~ and 9, e.g., by 
Newton's method. By the general theory of maximum-likelihood 
estimation,(52 57) the bias of the estimators /~ and ~ is of order 1/n. 
Moreover, the probability distribution of (/~, ~) is asymptotically Gaussian 
as n --* 0% with covariance matrix given explicitly as 

where 

=1,(#, 7)-'+ o @,) 

n '= ~ 1 
l < . i ~ n  

Ni >I Nmin 

is the censored sample size, I(#, 7) is Fisher's information matrix 

t 1 
I(P' 7) = l ( N ; l o g g ) u ~  

# 

~ (N; log N).,7 1 

! 

(log N; log N)~,~/ 

(4.28) 

(4.29) 

(4.30) 

and I(#, 7)-1 is its matrix inverse. We have here used the notation 

( A ; B )  = ( A B ) -  ( A ) ( B )  (4.31) 

Note that in principle Cov(~, 9) depends on the unknown "true" values # 
and 7; but since this dependence is rather weak, and since/~, ~ will be fairly 
close estimates of p, y (provided n'~> 1), it suffices for our purposes to 
replace #, 7 by the estimated values/~, ~ when attempting to compute error 
bars for /~, ~.14 These error bars are computed (for n'~>l) by taking the 

14 More rigorously, one would limit oneself to some region R of (p,),) space in which the true 
values are assumed to lie, compute the worst  possible error bars subject to that assumption, 
and thereby derive a rigorous confidence set for (p, 7) subject to the assumption that 
(~, ~)eR. 
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joint distribution of (/2, ~) to be Gaussian with mean (#, 7) and covariance 
matrix given by (4.28).15 A very important feature of this method is that the 
statistical error bars can be estimated prior to performing the Monte Carlo 
experiment. Moreover, in the large-sample limit n ~ oe it can be proven that 
the maximum-likelihood estimator is the optimal estimator, in the sense that 
any other estimator (within a certain very broad class) has larger or equal 
mean-square error at leading order in 1/n. (52 57) Thus, the maximum- 
likelihood method provides an optimal data analysis: it extracts from the 
Monte Carlo data {N1 ..... Nn} their full content as regards the parameters 
# and 7. 

We now return to the problem of corrections to scaling. Clearly, (2.1) 
is only the leading term in the asymptotic expansion of CN for large N; the 
renormalization group predicts (68) that the actual behavior is 

I a l  a2 . C N ~  NNy-1 ao + ~ + ~ - 5 +  "'" 

bo bl Co cl ] 
+ ~-55 + ~-Z--~ + ""  + ~-~5 +~27;--7 + ' "  (4.32) 

Here, in addition to analytic corrections to scaling of the form akiN k, there 
are non-analytic corrections to scaling of the form bk/N ~1 +k and ck/N ~2+k 
as well as more complicated terms not shown in (4.32). [Please note that 
the correction-to-scaling exponents A 1 < A 2 <  .--have no relation what- 
soever to the gap exponent A 4 defined in (2.7). Our notation here is stan- 
dard but unfortunate; we hope that it does not lead to any confusion.] The 
exponents A1, A2 .... are believed to be universal among lattices of a given 
dimension d. The amplitudes al,  al,..., bo, b~ ..... Co, Cl .... are lattice-depen- 
dent. 

The maximum-likelihood analysis described above is based on the 
assumption that (4.22) is exact for N~> Nmin; if (4.32) is correct, then this 
assumption is in error by an amount of order 1/Nmin (or 1/N~m]n if A 1 < 1). 
Thus we expect that the estimates of # and 7 derived using (4.22) have 
likewise a systematic error of this order (as well as higher-order correc- 
tions). A useful procedure would then be to perform the analysis for a 
variety of values of Nmin; to plot /2 and ~, together with their purely 
statistical error bars, as a function of Nmin (or 1/Nmin); and finally to 
attempt an extrapolation t o  Nmi n = oo. Of course, such an extrapolation is 
difficult: the data are "noisy" (in fact, the statistical error bars grow rapidly 
with Nmi~), and one must contend with higher-order corrections. Thus, 

15 For n'>> 1 we can neglect the bias (which is of order 1/n') since it is much smaller than the 
standard deviation [which is of order 1/(n')1/2]. 
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some uncertainty about the "correct" Nmi  n = 00 limit of the central values 
and ~ will inevitably remain. A crude (subjective) estimate of this residual 
uncertainty should be made; it should be reported as a possible systematic 
error induced by unaccounted-for corrections to scaling; it adds to the 
purely statistical error computed from (4.28) and embodied in the 
statistical error bars at each fixed Nmi n- 

As a further consistency check, one can perform the foregoing analysis 
with (4.22) replaced by 

CN=#NN ~-1 1 + ~  a o (4.33) 

(obviously al =a~/ao). Here al is considered, for the purpose of the 
maximum-likelihood analysis, to be a fixed constant. Since (4.33) is 
equivalent to (4.22) at leading order in l/N, any small value of ~1 is as 
reasonable a priori as any other; there is nothing sacred about zero. So one 
should perform the analysis for a variety of values of ~1, and check for con- 
sistency. The estimates extrapolated to Nmin = ~ should ideally be indepen- 
dent of al ; the discrepancy between the estimates obtained using different 
values of fil should be included in the reported systematic error. It is 
heuristically plausible that the "best" value of hi is that one which makes 
the estimates/~ and ~ as "flat" as possible as a function of Nmi  n ; though we 
are unable to offer any strong theoretical justification for this belief, we give 
some encouraging empirical results in Section 5.3. Finally, one may replace 
(4.33) by any functional form which is equivalent to it through order l/N; 
for example, one might use 

C N = #NN~' le~l/Nao (4.34) 

o r  

C N = # ~ ' ~ ( N + a I )  ~ l a  o ( 4 . 3 5 )  

[here ~1 = a l / ( 7 - 1 ) a o ,  and we must take al > -Nmi, ;  but (4.35) is not a 
good choice if 7 is near 1 ]. 

The foregoing procedures for dealing with corrections to scaling are, of 
course, very crude and ad hoc. A more systematic approach would be to 
perform the maximum-likelihood analysis on (4.33) [or (4.34) or (4.35)] 
with ~ considered as an unknown parameter to be estimated along with t~ 
and y. [(4.34) is particularly convenient for this purpose, since it is an 
exponential family.] This three-parameter maximum-likelihood estimation 
can be analyzed by the methods described previously. We have not carried 
out the details, but it seems clear that the variance of the estimator for cTj 
will be very high, because ~ N - ~ ; N  -~ )  is so small. The variance of the 
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estimators for # and 7 will be slightly higher than in the two-parameter 
MLE in which 81 is considered fixed; but the potential systematic error will 
be lower. In fact, the three-parameter MLE is probably roughly equivalent 
in practice to the more ad hoc approach described in the preceding 
paragraph; it is likely to be superior only if the available sample size is 
enormous. However, these questions deserve further investigation. 

We emphasize that the foregoing analysis is based on the implicit 
assumption that the leading correction-to-scaling term in (4.32) is the a l /N  
term, i.e., that A1 ~> 1. This assumption may or may not be correct; a more 
precise analysis would use a variable A1. Unfortunately, however, such a 
subtle distinction among correction-to-scaling terms is currently invisible 
due to statistical error (see Section 5.3); any effect of A 1 va 1 would simply 
be absorbed into a slightly changed correction-to-scaling amplitude. As 
more powerful computers become available, and the statistical errors are 
correspondingly reduced, the more precise correction-to-scaling analysis 
will become important. In any case, the errors resulting from the 
approximation A l >  1, as well as from the neglected higher-order terms in 
(4.32), are included in the quoted systematic error. 

Finally, we return to the problem of autocorrelations in the data 
{N1 ,..., Nn }. The autocorrelation time ~ can be estimated by the methods of 
Section 4.1. One then has several options: One may, as noted previously, 
choose to discard enough data so that the remaining data are essentially 
independent; the maximum-likelihood analysis then retains (more or less) 
its rigorous statistical justification. But this is a waste: the discarded data 
do contain useful information (albeit not as much as they would if they 
were independent). So an alternative procedure is to use all the data, com- 
puting the estimators ~ and ~ as i f  these data were independent, and then 
to adjust the error bars to correct for the nonindependence. A conservative 
adjustment would be to multiply the variance by 4r; by analogy with 
(4.4)-(4.6), one might guess that the "correct" factor is ~2z. A rigorous 
statistical justification for this procedure can be found in Refs. 69-71. A 
third alternative is to divide the Monte Carlo run into several blocks, each 
of which is large enough so that (a) distinct blocks are essentially indepen- 
dent, (b) the maximum-likelihood estimators /~ and ~ for each block are 
essentially Gaussian-distributed, and (c) the bias of the block maximum- 
likelihood estimators is much smaller than the overall standard error. 
[-Conditions (a) and (b) may typically be satisfied by taking the block size 
to be, say, > 50z; but condition (c) is often more delicate, and may require 
block sizes of order 1000r or even larger.] The block maximum-likelihood 
estimates are then independent Gaussian random variables of mean 
approximately (#, 7); the standard t-test (52 57) can thus be used to derive 
confidence intervals for/~ and y. 
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We have used all three of these procedures on our Monte Carlo data, 
as a consistency check; in Section 5.3 we give the results. 

4.3. Est imat ion of  v 

Let 091 ..... co n be the sequence of SAWs produced by the algorithm of 
Section 3 in its stationary distribution; let N1,..., Nn be the corresponding 
walk lengths and rl,..., r n the end-to-end vectors. Then, for each i, the 
probability distribution of co~ conditional on N~ (but averaging over 
{N~}jr gives equal probability to each N~-step SAW. 

Our goal is to estimate the critical exponent v defined in (2.4)-(2.6). 
As in Section 4.2, we begin by assuming that (2.4)-(2.6) are exact for 
N~>Nmin. Actually, the situation is here somewhat more subtle, because 
the validity of (2.5) requires not only N>>I but also Ixl>>l (actually 
Ixl ~N~), Of course, for large N the probability distribution of x is indeed 
concentrated around Ixl ~ N  v, so the use of (2.5) also for small Ixl will 
presumably entail a systematic error which is proportional to some inverse 
power of N, like other corrections to scaling; such an error can be neglec- 
ted at the present level of analysis. We are therefore justified in assuming 
that 

E(log(r/2 + al) ] Ni) =-- 2v log(N~ + a2) + b (4.36) 

is exact whenever N~ ~> Nmi n. Here a I and a 2 are arbitrary but fixed small 
numbers, which play a role analogous to al in (4.33)16; b is an unknown 
constant which will be estimated along with v; and E ( Y I X )  denotes the 
conditional expectation of the random variable Y given the values of the 
random variable X [in the physicists' notation it might be written (Y>x,  
but this is cumbersome]. 

We are thus in the following situation: Let Xe=log(N~+a2) and 
Y,-log(r2+al) .  Then we know that {(Xi, Yi)} form a stationary 
stochastic process satisfying 

E( Yi I Xi) = 2vX, + b (4.37) 

Let the means of this stochastic process be 

# x -  (Xi> 

#Y= < Yi> 

(4.38a) 

(4.38b) 

16 Of course, we must demand that a~ > - 1  (a~ > 0 if Nmln = 0) and a2 > -Nmin, in order that 
the logarithms be always well defined. 
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and the covariances be 

C x x ( i -  j)  =- ( X iX j )  - #2 x (4.39a) 

C r y ( i - j )  - ( Yi Yj ) - #2 (4.39b) 

C x r ( i - j )  =- (X~ Yi)  - l~xPr (4.39c) 

Then we can combine (4.37) with (4.38)/(4.39) to solve for v and b in terms 
of the means and covariances: 

Cxy(O) 
v = - -  (4.40) 

2Cxx(O) 

b - Cx~(O) ; y -  C~y(O) ~,~. 
Cxx(O) (4.41) 

If we now replace #x,/~Y, Cxx(O), and Cxr(O) by their natural estimators 

X, Y, ~xx(O), and Cxy(0) [see (4.3) and (4.8)], we obtain the 
corresponding estimators ~ and ~. These estimators for v and b are in 
general biased, because they involve a quotient of two random variables; 
but under very general assumptions on the stochastic process it can be 
shown that the bias is of order l/n, and thus negligible compared to the 
standard error. The variance of f and /~ (more generally, their covariance 
matrix) can be computed from the variances and covariances of X, Y, 
~xx(O), and Cxy(0), which are in turn given by simple generalizations of 
(4.4) and (4.10). 

We emphasize that our stochastic process does not satisfy the con- 
dition 

E(Yi I { X j } ) = 2 v X i + b  (4.42) 

which is stronger than (4.37); this is because knowledge of the lengths of 
predecessor or successor SAWs, i.e., of {Nj}jei, does affect the probability 
distribution of co i. Thus, this process is not a "general linear model", (52 57) 
and the classical least-squares theory does not apply. Although the 
estimators f and/~ turn out to have the same form as in the classical least- 
squares theory, they have very different properties: the bias is nonzero, and 
the variance is much larger than in the classical case (one would guess by a 
factor ~ 2r). 

Finally, the use made here of least-squares estimation as a valid 
statistical method should be distinguished from the common use of least- 
squares formulas as a mere curve-fitting technique. The latter is improper in 
the context of Monte Carlo data analysis: it confounds the roles played by 



508 Berretti and Sokal 

s t a t i s t i c a l  e r r o r s  (random fluctuations due to the inherent probabilistic 
nature of the Monte Carlo experiment) and s y s t e m a t i c  e r r o r s  (errors due to 
misspeciflcation of the model on which the data analysis is founded, e.g., 
due to corrections to scaling). 

5. RESULTS 

5.1. Pre l iminary  Tests 

Before starting the main Monte Carlo run, we performed several shor- 
ter runs at various values of /~ in order to test the correctness of our 
implementation of the algorithm and to test our conjecture (3.8) on the 
autocorrelation time. 

Our algorithm is supposed to produce walks with the probability dis- 
tribution (4.21). For the square lattice, the coefficients CN are known by 
exact enumeration for N~24 .  (72) We thus performed several runs at low 
values of/? (0.2~</~ 40.3) in order to produce primarily short walks; we 
then compared the observed and expected distributions of N (conditional 
on N~< 15) using the )~2 test. We obtained good agreement with theory, 
both for ordinary random walks and for self-avoiding walks. We also 
observed the fraction of walks ending in each quadrant, and compared by 
the )~2 method with the exact values of 1/4, again with good results. 

We tested our statistical-analysis programs (time-series analysis to 
estimate autocorrelations, maximum-likelihood analysis to estimate # and 
7, least-squares analysis to estimate v) by analyzing ordinary random walks 
produced by our algorithm. Here the exact answers # = 4, ~ --- 1, v = 1/2 are 
well known; the exact solution for the autocorrelations is given in Appen- 
dix A. 

Our pseudo-random-number generator was the multiplicative con- 
gruential generator (73) 

x n +  1 = a x n  mod m (5.1) 

with modulus m = 2 48 and multiplier a = 1113. This generator is due to 
Kalos, and has been used extensively in Monte Carlo studies at the 
Courant Institute. In particular, it has passed all the standard tests for 
randomness. (74) 

Our main run was performed at/~ = 0.376, corresponding to 

( N ) ~ I ~  ~166 (5.2) 

The random-number-generator seed was x 0 = 1. We took the initial con- 
figuration to be the empty walk, and then performed 45 x 10  9 Monte Carlo 
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steps; this took about 340 hours CPU time on the CDC Cyber 170-730. 
Data was taken once every 50• 103 MC steps. In doing the statistical 
analysis we always skipped the data from the first 50 x 106 MC steps; since 
this is ~ 300z (see Section 5.2), the system has clearly reached equilibrium. 

5.2. Autocorrelations 

We estimated the autocorrelation functions for the following obser- 
vables: 

N(t): number of bonds in the walk 
log[N(t)  + 1] 
r(t): end-point vector 
r(t)2: squared end-to-end distance 
log[r(t)  2 + 1 ] 
e(t) -= log[r(t)  2 + 1] - 2v o log[N(t)  + 1 ]: 

error term in classical least-squares analysis; 
here Vo is a guess for v (we used vo = 3/4) 

These autocorrelation functions are known to satisfy the spectral represen- 
tation (4.14). Our main aim was to estimate the autocorrelation time z 
defined in (4.15). The difficulty is that our estimates of the autocorrelation 
function C(s) are afflicted by a statistical error [cf. (4.9)/(4.10)] which 
grows rapidly [-relative to C(s) itself] as s ~ o% which is exactly the limit 
in which r is defined. We therefore proceed heuristically as follows: we 
define a function 

- - S  
z ( s )  - (5.3) 

log[C(s)/C(O)3 

and note that, by (4.14), T(s) is increasing and its limit as s ~  o9 is the 
autocorrelation time z. We then compute estimates ~(s) to z(s) by using 
our C(s) [-or ~(s)]  defined in (4.7)/(4.8); we take as our estimate "~ of z the 
maximum value achieved by ~(s) before it begins to decrease due to noise. 
(This procedure probably tends to give a slight overestimate of z.) The 
error bars on ~ are computed as usual by propagating the estimated error 
bars of C(s) [cf. (4.12)]. 

The results of this analysis for the main run are summarized in 
Table II. They are consistent with all observables other than e having the 
same autocorrelation time, about 150 000 MC steps. Note also that the 
autocorrelation time for e is almost exactly half that for the other quan- 
tities. We have no explanation for this curious result, but it seems vaguely 
reminiscent of a "two-particle threshold" in quantum field theory. Apparen- 
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Table II. Estimated Autocorre lat ion Times 
T for  Selected Observables, f rom Main  Run 

at [[3 = 0.376 a 

N (157 _+ 17)x 103 
log (N+ 1) (130_+ 36) x 103 

r ( 1 5 4 + 6 )  x 103 
r 2 (161 _. 16)x 103 

log(r 2 + 1) (138_+ 13) x 103 
e (72 _+ 4) x 103 

Error bars are _+ two standard deviations, and 
include statistical error only. 

tly, e acting on the "vacuum" yields a state which is orthogonal to the 
slowest mode, and the next-slowest mode (to which 8 does couple) has 
exactly twice the "mass" of the slowest mode. 

We also performed shorter runs at lower/~ in order to test the conjec- 
ture (3.8). The results of the time-series analysis for these runs are shown in 
Table III; for simplicity we give ~ only for the observable N. We see that 
over a wide range of values of <N> and ~, the ratio "el<N> 2 is constant 
within error bars. This supports our conjecture (3.8), with a propor- 
tionality constant c--5.  Note, however, the extreme difficulty of getting 
high-precision estimates of dynamic quantities. 

5.3. Estimates of p and y 

We performed a maximum-likelihood estimation of # and 7 as 
described in Section 4.2, using the scaling form (4.35): 

C N = I I N ( N - t - k o )  ~ - '  a o ( N / >  Nmin)  (5 .4 )  

Table III. Estimated Autocorre lat ion Time T for  the Obser-  
vable N,  for Selected Values of ~a 

0.335 494_+41 10.22_+0.09 4.7_+0.5 
0.355 1710_+ 170 19.7 _+0.2 4.4--0.5 
0.369 (16 .2+4 .1)x  103 49.0 _+0.6 6.7_+ 1.9 
0.376 (157_+ 17)x 103 165,7 _+0.7 5.7_+0.7 

Error bars are _+ two standard deviations, and include statistical error 
only. 
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Table IV. Max imum-L ike l ihood  Estimates of IJ, Assuming (5,4)  a 

~ k  mln 1 20 50 100 

0 2.63853 4- 0.00017 2.63833 4- 0.00022 2.63826 4- 0.00030 2.63823 4- 0.00042 
1 2.63831 __+ 0.00017 2.63829 __+ 0.00022 2.63824 __+ 0.00030 2.63822 + 0.00042 

1.5 2.63822 __+ 0.00018 2.63826 _____ 0.00023 2.63823 __% 0.00029 2.63822 + 0.00043 
2 2.63815 4- 0.00018 2.63824 4- 0.00022 2.63822 4- 0.00030 2.63821 + 0.00043 

2.5 2.63808 4- 0.00018 2.63822 4- 0.00023 2.63821 4- 0.00030 2.63821 4- 0.00043 
3 2.63801 4- 0.00018 2.63820 4- 0.00023 2.63820 4- 0.00030 2.63820 4- 0.00043 

3.5 2.63795 4- 0.00018 2.63818 4- 0.00023 2.63819 4- 0.00030 2.63819 4- 0.00043 
4 2.63789 _+ 0.00019 2.63815 4- 0.00023 2.63818 4- 0.00030 2.63819 4- 0.00043 
5 2.63778 4- 0.00018 2.63811 4- 0.00023 2.63815 4- 0.00030 2.63818 4- 0.00043 

a Error bars are + two standard deviations, and include statistical error only; they are the 
values computed from (4.28), multiplied by (27:) 1/2. 

[Here and in the following we write ko for hi- We also remind the reader of 
the approximation A I > I  implicit in (4.35).] We tried a wide range of 
values of ko and Ninon. The main results of this analysis are summarized in 
Tables IV and V. 

The estimates obtained by taking Nm~n = 1 are clearly biased by strong 
systematic error due to higher-order corrections to scaling not accounted 
for in (5.4); we thus feel it is safest to disregard these results. Restricting 
ourselves to the cases Nmm = 20, 50, 100 we see that for ko = 2.5, 3, 3.5 

Table V. Max imum-L ike l ihood  Estimates of  y, Assuming (5.4)  ~ 

~0~ rain 1 20 50 100 

0 1.318 4- 0.009 1.333 4- 0.015 1.340 _4- 0.024 1.344 + 0.045 
1 1.337 _+ 0.009 1.340 _+ 0.015 1.344 4- 0.025 1.346 4- 0.046 

1.5 1.346 4- 0.010 1.343 + 0.015 1.346 4- 0.025 1.348 _+ 0.046 
2 1.353 _+ 0.010 1.346 4- 0.015 1.348 4- 0.025 1.349 _+ 0.046 

2.5 1.360 4- 0.010 1.349 _+ 0.015 1.350 4- 0.025 1.350 _+ 0.046 
3 1.367 4- 0.010 1.352 + 0.016 1.352 4- 0.025 1.352 + 0.046 

3.5 1.374 • 0.010 1.355 4- 0.016 1.354 4- 0.025 1.353 + 0.046 
4 1.380 _+_ 0.011 1.358 + 0.016 1.356 + 0.025 1.355 _+ 0.047 
5 1.393 + 0.011 1.365 4- 0.016 1.360 + 0.026 1.354 _+ 0.047 

Error bars are _4- two standard deviations, and include statistical error only; they are the 
values computed from (4.28), multiplied by (27:) 1/2 . 



512 Berretti  and Sokal 

(values printed in boldface) the dependence on Nmin of the estimates of # 
and 7 is very weak; we consider these to be the "best" estimates. We take 
the arithmetic mean of the highest and lowest among the boldface values as 
our central estimate; we take the difference between these highest and 
lowest values as the systematic error (subjective 95% confidence limits)IV; 
and we take the error bars at Nmi n ----50 (which are 95% confidence limits 
in the classical statistical sense) as the purely statistical error. We thus 
obtain 

# = 2.63820 __+ 0.00004 + 0.00030 

7 = 1.352 __ 0.006 + 0.025 

(5.5a) 

(5.5b) 

as our final estimates; here the format is central estimate +_ systematic 
error _+ statistical error. Note that the data in Tables IV and V exhibit a 
very smooth and monotonic behavior as a function of ko and Nmi n ; our 
heuristic "flatness criterion" appears (based on internal evidence alone) to 
work well. For  this reason, the estimated systematic error is considerably 
smaller than the statistical error. 

We would have liked to do a further check on our method of dealing 
with corrections to scaling by using it on ordinary random walks; but since 
7=  1 in this case, varying ko in (5.4) has no effect. This check could be 
done using (4.33) or (4.34) instead of (4.35)/(5.4), but we have not yet had 
time to do so. 

The estimates in Tables IV and V are obtained using our preferred 
approach for dealing with the effects of autocorrelations, namely, using all 
the data as if it were independent and then multiplying the error bars by 
(2r) 1/2 to adjust for the nonindependence, in order to test this approach, 
we also performed a more traditional kind of analysis: we split the main 
Monte Carlo run into 50 blocks, each large enough (-~6000~) to be con- 
sidered effectively independent. We then computed maximum-likelihood 
estimates of # and 7 for each block (still using all the data as if it were 
independent), and defined final estimates as the arithmetic average of the 
50 block estimates. The statistical error is a 95% confidence interval com- 
puted by the standard t test. Typical results are 

~7 Note that this choice makes the confidence interval twice as wide as the minimal interal 
which contains all of the boldface values; we make this choice because we feel we do not 
completely understand the systematic error, and we therefore wish to be conservative. Our 
error bars are also conservative 95% confidence limits in the technical statistical sense: we 
are willing to wager any small sum of money (say, $1 U.S.), giving 19:1 odds, that our con- 
fidence interval covers the true value; but we are not willing to bet the contrary at only 19:1 
odds. 
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k0 = 1, N m i  n = 50: # = 2.63821 -t- 0.00023 
(5.6) 

7 = 1.346 _+ 0.014 

k o = 1, N m i  n = 100: # = 2.63816 _ 0.00033 
(5.7) 

? = 1.352 + 0.028 

The central estimates agree reasonably well with the corresponding ones 
obtained by a single maximum-likelihood analysis of the whole Monte 
Carlo run; the difference is probably attributable to the differing biases of 
the maximum-likelihood estimators for the whole run and for the blocks 
(since the bias is inversely proport ional  to the sample size). For  this reason, 
we consider the central estimates (5.5) to be more accurate. However, 
(5.6)/(5.7) do indicate that the statistical error bars shown in Tables IV 
and V are probably a bit too conservative. 

As a final check, we performed a maximum-likelihood analysis based 
on data taken only once every 500 000 MC steps; since this spacing is ,-, 3~, 
such data can be considered to be effectively independent, and so the stan- 
dard maximum-likelihood theory applies without adjustment. Typical 
results are 

ko = 1, N m i  n = 50: # = 2.63799 _+ 0.00040 
(5.8) 

7 = 1.356 + 0.033 

k o = 1, Nmin = 100: # = 2.63803 + 0.00057 
(5.9) 

7 = 1.349 __+ 0.061 

The results are again consistent with those in Tables IV and V, but with 
larger error bars; this latter fact is hardly surprising, since some of the data 
have been thrown away. 

5.4.  E s t i m a t e s  o f  v 

We estimated v as described in Section 4.3, using the scaling form 
(4.36): 

(log(r2 + k l ) )  =2vlog(N+kz)+b (N ~> Nmjn) (5.10) 

We tried a wide range of values of kl ,  k2, and N m i  n. The main results of 
this analysis are summarized in Table VI. 

In the present case the problem of systematic error due to corrections 
to scaling appears to be quite serious. As before, we disregard the estimates 
corresponding to Nmin = 1. Even so, we are unable to get a truly flat depen- 
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dence o n  Nmi n no matter how we choose k I and k 2. On the other hand, for 
a rather large range of values of k 1 and k 2 we can obtain a fairly weak 
dependence on Nmin (for Nmln ~> 20); but this leads to a rather large range 
of estimates of v, all of which appear equally plausible. More specifically, 
we find the following: for kl ~ k2 the plot of f versus Nmin is always very 
far from flat, so we restrict ourselves henceforth to the case k~ = k2. Then, 
for 2.5 ~< kl = k2 ~ 3.75 (values printed in boldface) the dependence of f on 
Nm~n is fairly weak; proceeding as in Section 5.3 we obtain the final 
estimate 

v = 0.7590 _ 0.0062 _ 0.0042 (5.11) 

where the format is again central value __ systematic error __ statistical 
error. Note that here the systematic error is larger than the statistical error; 
clearly there are strong corrections to scaling which we do not understand 
and which are not captured in our assumption (5.10). 

As a check on our method of dealing with corrections to scaling, we 
applied it to ordinary random walks. We produced ordinary random walks 
at /3=0.244, corresponding to ( N ) - ~ 4 0 ,  and performed 10 9 MC steps 
(about 5 hours CPU time). The resulting estimates of v are summarized in 
Table VII. There is a quite wide range of values of k~ and k2 yielding 
reasonably fiat plots; considering only these values of kl,k2 (and 
Nmi n ) 10), we are led to the estimates 

v = 0.511 __ 0.020 + 0.016 (5.12) 

where the statistical error is taken at Nmi n = 25. 
This is compatible with the exact answer v = 1/2. However, there 

seems to be in both (5.11) and (5.12) a consistent tendency to overestimate 
v; this may indicate the inappropriateness of our form (5.10) for 
representing corrections to scaling. Perhaps a more suitable form would be 

(log(r2+klN2Vo))=2vlog(N+k2)+b ( N ~  Nmin) (5.13) 

where Vo is a guess for v; this form seems to reflect more accurately the 
expected scaling behavior (2.6). We hope in the near future to reanalyze 
our data using (5.13) in place of (5.10). 

The error bars in Tables VI and VII are computed, for simplicity, by 
taking the standard least-squares error estimates (52-57) and multiplying 
them by (2~) m, rather than by the more correct (but more complicated) 
formula mentioned in Section 4.3. As a check on this method, we also did a 

822/40/3-4-10 
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Table VII. Least-Squares Estimates of v for Ordinary Random Walk,  
Assuming (5.10) a 

kl, k ~ 2  N~in 10 1 25 50 

0.25, 1.00 0.500 + 0.006 0.499 + 0.010 0.503 + 0.016 0.509 _+ 0.031 
0.25, 1.50 0.518 _-+ 0.006 0.506 _+ 0.010 0.507 _-t- 0.016 0.512 + 0.031 
0.25, 2.00 0.534 ___ 0.006 0.513 -+ 0.010 0.512 ___ 0.016 0,515 + 0.031 
0.25, 2.50 0.550 + 0.006 0.520 + 0.010 0.516 + 0.016 0.518 + 0.032 
0.25, 3.00 0.564 • 0.006 0.527 -- 0.010 0520 + 0.017 0.520 + 0.032 
0.50, 2.00 0.512 + 0.006 0.501 + 0.010 0.504 + 0.016 0.509 ___ 0.031 
0.50, 2.50 0.527 + 0.006 0.508 ___ 0.010 0.508 + 0.016 0.512 +_ 0.031 
0.50, 3.00 0.541 + 0.006 0.515 + 0.010 0.512 + 0.016 0.515 -+ 0.031 
0.50, 3.50 0.554 +__ 0.006 0.521 _+ 0.010 0.516 +_ 0.016 0.517 -+_ 0.031 
0.50, 4.00 0.567 -+ 0.006 0.528 _% 0.010 0.520 ___ 0.017 0.520 _+ 0.031 
0.75, 2.50 0.510 + 0.006 0.498 + 0.009 0.501 ___ 0.016 0.507 __+ 0.030 
0.75, 3.00 0.524___0.006 0.505_+0.009 0.505___0.016 0.510_+0.030 
0.75, 3.50 0.536 + 0.006 0.512 _ 0.010 0.509 + 0.016 0.512 _+ 0.031 
0.75, 4.00 0.549 _% 0.006 0.518 __+ 0.010 0.513 __. 0.0 I6 0.515 ___ 0.031 
0.75,4.50 0.560--0.006 0.524___0.010 0.517__+0.016 0.518-+ 0~031 
1.00, 3.00 0.509 -+ 0.006 0.496 -+ 0.009 0.499 _+ 0.016 0.505 _+ 0.030 
1.00, 3.50 0.521 _+ 0.006 0.503 _+ 0.009 0.503 _+ 0.016 0,508 + 0.030 
1.00, 4.00 0.533 -+ 0.006 0.509 -+ 0.009 0.507 -+ 0.016 0.510 -+ 0.030 
1.00, 4.50 0.545 -+_ 0.006 0.515 _+ 0.010 0.511 _+ 0.016 0.513 _+ 0.030 
1.00, 5.00 0.556_+_0.006 0.522 + 0.010 0.515 0.016 0.516+__0.031 
1.25, 3.50 0.508 _+ 0.006 0.495 _ 0.009 0.497 _+ 0.015 0.504 _+ 0.030 
1.25, 4.00 0.520 _+ 0.006 0.501 __. 0.009 0.501 __. 0.015 0.506 + 0.030 
1.25, 4.50 0.531 + 0.006 0.508 _.%. 0.009 0.505 _-+ 0.015 0.509 + 0.030 
1.25, 5.00 0.542 + 0.006 0.514 _ 0.009 0.509 -+ 0.016 0.512 _+ 0.030 

a Error bars are - two standard deviations, and include statistical error only; they are the 
values computed from classical least-squares theory, multiplied by (2z) In. 

"block" analysis similar to the one done for # and 7; we obtained for the 
SAW 

k 1 -- k 2 = 2.25, Nmi n = 50: v = 0 .7550 _+ 0.0025 (5.14)  

k l  = k2 = 2.25, Nrnin = 100: v = 0 .7565 + 0 .0044 (5.15)  

T h e  re su l t s  a g r e e  c lose ly  w i t h  t he  c o r r e s p o n d i n g  en t r i e s  in  T a b l e  VI ,  a n d  

s h o w  t h a t  t he  e r r o r  b a r s  s h o w n  in  t h a t  t a b l e  a re  p r o b a b l y  s o m e w h a t  c o n -  

se rva t ive .  

F ina l l y ,  we p e r f o r m e d  a n  a n a l y s i s  b a s e d  o n  d a t a  t a k e n  o n l y  o n c e  e v e r y  

5 0 0 0 0 0 M C  steps ,  for  w h i c h  t he  s t a n d a r d  ( i n d e p e n d e n t - e r r o r s )  l eas t -  

s q u a r e s  t h e o r y  app l i e s  w i t h o u t  a d j u s t m e n t .  T y p i c a l  r e su l t s  a re  
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k l  = k2 = 2.25, N m i  n = 50: V = 0.7570 ___ 0.0055 (5.16) 

k l = k 2 = 2 . 2 5 ,  Nmin= 100: v=0.7599__+0.0084 (5.17) 

As expected,  the results are consis tent  with the co r re spond ing  entries of 
Table  VI bu t  with larger  e r ror  bars.  

6. D I S C U S S I O N  

6.1. Compar ison  w i t h  Previous W o r k  

In Table  VII I  we compare  our  M o n t e  Car lo  es t imates  of #, 7, and  v 
with previous ly  publ i shed  es t imates  ob ta ined  by a var ie ty  of  methods .  O u r  
es t imates  are consis tent  with mos t  previous  ones; in par t icu lar ,  they are 
consis tent  with Nienhuis  '(79'8~ exact  (but  nonr igo rous )  results v = 3/4 and  

= 43/32.18 

Our  er ror  bars  are larger  than  those in m a n y  of the cited works.  
However ,  at  the risk of being considered spoi lsports ,  we would  like to 
expla in  why we believe that  the e r ror  bars  in several  previous  studies may  
have been underes t imated .  

Exact  e n u m e r a t i o n / e x t r a p o l a t i o n  studies are no to r ious ly  difficult and  
subjective. They are extremely sensitive to the assumed form of correc t ions  
to scaling. (87) Appa ren t l y  these difficulties were sufficiently serious tha t  
nei ther  G u t t m a n n  (75) nor  Adler  (7vl a t t empted  to specify e r ror  bars  for 7 
(naively one would  guess from their  da t a  abou t  +0.004) .  Moreover ,  
Grassberger ' s  (8I~ er ror  bars  for v are clearly too  small  by a factor  of 3, if for 
no o ther  reason than  that  they exclude the p robab le  exact  value v = 3/4. 
Our  inc l ina t ion  is therefore  to be conservat ive  in in te rpre t ing  exact-  
e n u m e r a t i o n / e x t r a p o l a t i o n  data ;  we would  prefer to mul t ip ly  the e r ror  bars  
of G u t t m a n n ,  175~ Adler ,  (77) and  Maj id  et al. (82'831 by a factor  of 1.5 or  2. 

Even so, we believe tha t  exact  e n u m e r a t i o n / e x t r a p o l a t i o n  is still the mos t  
accurate  m e t h o d  avai lable  for es t imat ing  cri t ical  exponents .  This will 
change,  however,  in the future, as more  powerful  compute r s  become 
avai lable:  the er ror  bars  for M o n t e  Car lo  decrease much  more  rap id ly  with 
compu te r  t ime than  those for exact  enumera t ion /ex t r apo la t ion .  19 In  any 

18 In Nienhuis' original article, (79) ~2 = 3/4 was supported by a renormalization-group argument 
but 7 = 43/32 had only the status of a promising numerological conjecture. Subsequently, ~8~ 
Nienhuis gave the result for 7 a comparable renormalization-group foundation. 

19 The labor involved in exact enumeration grows exponentially with the order, while the 
extrapolation error is proportional to some inverse power of the order (the power depends 
on the details of the correction-to-scaling terms and the extrapolation method). Thus the 
error decreases only as an inverse power of the logarithm of the computer time. For Monte 
Carlo, by contrast, the behavior is a plain inverse power; see Section 6.2 and Table IX. 



518 ' 

Table VIII. 

Berretti  and Sokal 

Comparison wi th  Previous Estimates of p (Square Lattice) and y 
and v (all Two-Dimensional  Lattices) a 

Exact 
enumera- Renormali- Prev ious  

tion/extra- zation Monte Present Exact 
polation group Carlo paper values(?) 

2 . 6 3 8 1 •  2 . 6 3 8 1 7 •  
0.0002 b 0.00021C 

2.638155 • 

0 .000025 t 

~ 1 . 3 4  b 1.327, 

~ 1 . 3 4 4  a 1.352 e 

0.747 • 0.7503 • 

0.001 g 0.0002 ~ 

0.7500 • 
0.0025 h 

0.753 • 
0.004 k 

0.71 •  

0.737, 
0 .7516 e 

0 . 7 5 6 •  i 

0.74 •  

2 .63820 

•  

•  

1.352 

•  

•  

0 .7590 

•  

•  

t .343751 

0.75 j 

a E r r o r  ba r s  are those claimed by the respective authors. 
b G u t t m a n n j 7 5 )  

c Derrida.(76) 

~l Adle r  jr7) 

e K o l b  et  al. 178) 

r Nienhuisjvg.8o) 

g G r a s s b e r g e r  ~81) 
h M a j i d  et aL 18z831 

i Redner and Reynolds .  12~ 

J K r e m e r  et  al. 184) 

k Havlin and B e n - A v r a h a m .  185) 

t Enting and G u t t m a n n J  86) 

case, the two methods have complementary advantages and drawbacks; it 
is important to pursue both. (After the completion of this work, Enting and 
Guttmann (86) took a significant step forward in exact enumeration: using a 
new algorithm, they extended the square-lattice self-avoiding-polygon series 
to order 46. Assuming the exact critical exponent (Zsing = 1/2 [which follows 
from v = 3 / 4  by the hyperscaling relation(2.11)], they estimated 
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# =  2.638155_+0.000025--a value consistent with, but much more precise 
than, the present work.) 

Derrida's (76) estimates # = 2.63817_+ 0.00021 and v = 0.7503 _+ 0.0002 
are based on a finite-size-scaling (phenomenological-renormalization) 
analysis of the transfer matrix on strips of width n ~< 11, extrapolated to 
n = oo. However, the extrapolation of such short sequences is fraught with 
serious dangers, especially since our theoretical understanding of the con- 
vergence properties of the finite-size-scaling method is rather imperfect at 
present.(88 9o) In particular, Derrida's periodic-b.c, data seem to converge 
anomalously fast (for one possible explanation of this phenomenon, involv- 
ing a cancellation between leading and non-leading correction-to-scaling 
terms, see Refs. 89 and 90); moreover, the data are monotonic and go 
beyond the presumed exact value v = 3/4. For both these reasons, one may 
question whether the asymptotic regime (in which the leading correction- 
to-scaling term dominates all others) has yet been reached. 2~ Derrida's 
periodic-b.c, estimates for v and # do in fact come remarkably close to the 
values obtained several years later by Nienhuis (79'8~ and Enting and 
Guttmann, (86) respectively; but it is far from clear whether this reflects the 
systematic convergence rate of the finite-size-scaling method, or merely a 
fortuitous (and in fact misleading) cancellation among competing correc- 
tion-to-scaling terms. In the latter case, Derrida's error bars would need to 
be increased rather drastically. Finally, we note that Derrida's data for free 
b.c. suggest a much higher value for v, around 0.757. It is true that free b.c. 
are expected on theoretical grounds to be less reliable than periodic b.c., 
since they are subject to surface effects as well as finite-size effects; 
moreover, the free-b.c, estimates for v in this model give internal evidence 
of their nonreliability by being non-monotonic. For these reasons the free- 
b.c. data should be given less credence, but in our opinion (as well as that 
of other authors [2~ they cannot simply be ignored: they indicate that 
we do not yet completely understand the convergence properties of the 
finite-size-scaling method--certainly not to the accuracy claimed. For 
further discussion, see Refs. 89-91. (We thank Michael Barber and Bernard 
Derrida for discussions and correspondence on these points; they are not, 
however, responsible for the views expressed here.) 

Kolb eta/.  (7s) performed a similar phenomenological-renormalization 
analysis of the "quantum Hamiltonian" version of the N-vector model 
(with periodic b.c. only), analytically continued to N =  0. By three distinct 
methods, they obtained v = 0.71 + 0.10, v =0.737 and v =0.7516, where no 
error bars are indicated on the latter two estimates. Kolb et al. also quoted 
estimates for the critical exponent t/ which, using the scaling law 

20 This possibility was stated clearly already by Derrida. t76) 
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7 = ( 2 - ~ / ) v ,  imply the estimates 7 = 1.327 and 7 = 1.352. In our opinion 
the foregoing criticisms regarding extrapolation methods and boundary 
conditions apply here as well. 

Redner and Reynolds (2~ performed a large-cell position-space renor- 
malization group analysis of the SAW on the square lattice, using a Monte 
Carlo method to generate the requisite data. Kremer et al. (84) carried out 
an analogous analysis of continuum polymer chains. Both of these works 
make a careful distinction between systematic and statistical errors; their 
error bars appear reasonable. (However, in retrospect one can see that they 
are at least a bit too small, since they exclude (or almost exclude) the 
probable exact value v = 0.75.) 

Havlin and Ben-Avraham (85'92) analyze their Monte Carlo data using 
an interesting concept which they call "local fractal dimensionality." Their 
approach makes  scaling assumptions on the internal distances of the SAW; 
as a result (and provided that their scaling assumptions are correct), they 
are able to utilize information which is simply thrown away in conven- 
tional analyses such as our own. One would therefore expect their method 
to be more accurate than otherwise-identical conventional Monte Carlo 
studies (how much more accurate is an open question). Unfortunately, 
however, Havlin and Ben-Avraham have not indicated clearly their 
statistical techniques or distinguished between systematic and statistical 
errors; further clarification in this regard would be desirable. 

(After the completion of this work, we received an announcement of 
interesting Monte Carlo work by Rapaport .  (93)) 

Finally, we note the existence of a number of position-space renor- 
malization-group studies of self-avoiding walks(94-98'2~ their results are 
qualitatively reasonable but do not appear to have yet converged. For  this 
reason we do not cite them in Table VIII. 

6.2.  F u t u r e  D i r e c t i o n s  

We believe we have demonstrated in this paper that pure Monte 
Carlo 21 is a viable method for the high-precision numerical determination 
of critical exponents in the self-avoiding walk. We would like now to 
indicate some possible directions for future work: 

(1) Brute force.  Our use of computing power has been rather 
modest; one obvious way of improving on our results would be to apply 

21 By "pure" Monte Carlo we mean to distinguish our approach from "Monte Carlo renor- 
malization group" methods. 1~~176176 In these latter methods, Monte Carlo is used as a 
technical tool, but the conceptual foundation is some form of the real-space renormalization 
group; in particular, the exponent estimates satisfy hyperscaling automatically. Of course, 
even our method does require some assumption on the form of scaling laws and corrections 
to scaling [cf. (4.32)]. 
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Table IX. Scaling of Statistical and Systematic Error with Average Walk 
Length ( N )  and Computer Budget B 

Statistical Systematic Optimal Total error, 
Quantity error error a value of (N) using optimal (N) 

# ~B 1/2 ~ (N)-(l+a) o(3 ~B - m  
(or anything 
>~ B1/(2 + 2A)) 

~/ ~ ( N )  B -1/2 ~ ( N ) - A  ~Bi/(2+2A) ~B-~/(2+2A) 
v ~ (N} B -1/2 ~ (N} -~ ~B 1/(2+2zf) ~B -~/(2+2~) 

a Here A ~-min(A1, 1) is the leading correction-to-scaling exponent. 

more computer  time and faster machines. The choice of fl (and thus of 
( N ) )  is a tradeoff between statistical error and systematic error. The 
statistical error can be computed from (4.28)-(4.30) multiplied by 
(2r) ~/2~ ( N ) .  The order of magnitude of the systematic error can be deter- 
mined by computing the effect on /~, 9, and f of the correction-to-scaling 
terms in (4.32); it is controlled by the leading correction-to-scaling 
exponent A -  min(A1, 1). Table IX shows how the errors scale with ( N )  
and with the computer  budget; it assumes that the data analysis is perfor- 
med at N m i  n = const x ( N ) .  

(2) One-parameter maximum-l ike l ihood estimation. If either # or 7 is 
known exactly, then the other one may be estimated by a one-parameter  
maximum-likelihood method; the estimates obtained in this way are about  
3 times as accurate as the corresponding two-parameter  MLEs described in 
Section 4.2. (Note that the error bars can here be computed a priori  from 
(4.28)-(4.30) and their analogues.) For example, on the honeycomb lattice 
Nienhuis (79'8~ has derived the exact value # =  ( 2 + ~ ) 1 / 2 ;  this can be 
employed to improve the estimate of 7. On the other hand, if one assumes 
the correctness of Nienhuis '18~ exact value 7=43 /32- -which  by univer- 
sality ought to be valid for all two-dimensional lat t ices--then one can 
improve the estimate of # on those two-dimensional lattices where it is not 
known exactly. We intend soon to reanalyze our square-lattice data in this 
way. For the triangular lattice, there is a long-standing conjecture (1~ that 
#tr iangular-1-]~honeycomb = 6; Guttmann,  Osborn and Sokal (m2) have recently 
undertaken a test of this conjecture using the Monte Carlo algorithm of the 
present paper. 

(3) Radius o f  gyration. The radius of gyration of a SAW is expected 
to scale with the same exponent v as the end-to-end distance; but its 
variance is likely to be smaller, since it is a more "global" measure of the 
behavior of the walk. The radius of gyration of an N-step walk can be corn- 
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puted in a time of order N; but since this computation need be executed 
only when one takes data, i.e., once every ~ I " ~ ( N )  2 Monte Carlo 
iterations, the extra computation involved is negligible. This is therefore a 
feature worth adding to future work. 

(4) Higher dimensions. The methods of this paper extend 
immediately to SAWs on higher-dimensional lattices (see Appendix C for 
some programming considerations). The most important application, in 
our opinion, would be a direct test of hyperscaling in the d = 3 SAW. (One 
point which requires further thought is the devising of a good scheme for 
the statistical estimation of the exponent A4.) Another application would 
be the estimation of logarithmic correction-to-scaling exponents in d = 4. 

(5) Monte Carlo renormalization group. As we have emphasized, 
pure (non-RG) Monte Carlo methods have the advantage that they 
provide an independent determination of all critical exponents, and thus 
allow a test of scaling laws. In MCRG methods, ~~176176 by contrast, all 
scaling laws (including hyperscaling) are built in from the beginning. On 
the other hand, if the scaling laws are in fact correct (as they probably are 
for d<4) ,  MCRG provides a much more sophisticated--and, one would 
expect, correspondingly more accurate--method for the numerical deter- 
mination of critical exponents. The raw data for a MCRG calculation can 
be supplied by any Monte Carlo algorithm, including our own. Ideally the 
computation should be arranged so as to permit both a "pure" and an 
MCRG analysis of the same Monte Carlo data. The concept of "local frac- 
tal dimensionality ''~85'92) provides yet another interesting approach to 
analyzing the data. 

A P P E N D I X A .  EXACT S O L U T I O N  OF THE D Y N A M I C S  
FOR THE O R D I N A R Y  R A N D O M  W A L K  

In this appendix we give the exact solution for the autocorrelation 
functions of our Monte Carlo algorithm for the case of ordinary random 
walk (i.e., with self-avoidance checking ignored). 

Consider first those observables which are functions of N(t), the num- 
~ber of bonds in the walk at time t. Now N(t) executes a random walk with 

~trift on the nonnegative integers: it is a Markov chain with one-step trans- 

Pjk = P(J --* k) = 

ition probabilities 

w if k = j +  1 

1 - w  if k = j - l , j > ~ l  

1 - w  if k = j = 0  

0 otherwise 

(A~) 
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where 

w = 2rift~(1 + 2rift) (A2) 

and 0 ~< w < 1/2. This Markov chain has the unique stationary distribution 

where we have written v = 1 -  w. The autocorrelation function o f f ( N )  is 
then 

( f ( N ( t ) ) ; f ( N ( t + s ) ) ) =  ~ rcjf(j)[p}~)-rck]f(k) (A4) 
j , k  ~ 0 

where p}~) are the s-step transition probabilities. 
The transition probabilities p}~) have been computed by Shenton (1~ 

for a somewhat more general random walk, using a generating-function 
formalism. Specializing his equation (8) to our case, 22 we find after some 
algebra 

+ c o s  s 

where we have written 

Equation (A5) is the explicit form of the spectral representation whose 
existence is guaranteed by general theory (see Appendix B and Ref. 104, 
p. 59, exercise 3.21). The leading exponential behavior as s ~  oe can be 
read off from (A5); the autocorrelation time is 

r = { - log[2(vw) 1/23 } - i  

= - 2 / l o g [ 1  - 1/(1 + 2 ( N ) )  2] (A7) 

= 8 ( N ) 2 + O ( ( N ) )  

where we have used ( N ) = w / ( 1 - 2 w ) .  This confirms our qualitative 
argument leading to (3.8). 

22 A prefactor 1/g was inadvertently omitted in that equation (but not in subsequent ones). 
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We now consider observables which depend on the spatial confor- 
mation of the walk. Let aj(t) be the j t h  bond of the walk, i.e., ai(t ) equals 
some unit coordinate vector i f j  ~< N(t), and aj(t) = 0 i f j  > N(t). Then 

k 

rk(t ) = ~ aj(t) (A8) 
j = l  

is the end point of the kth bond, and 

N(t) 
r~(t)  = ~ a j ( t )=  Z aj(t) (A9) 

j = l  j = l  

is the end point of the chain. Clearly 

(aj(t)  > = 0 (A10) 

by isotropy. Now we claim that 

(aj(to).ae(to+S)>=SjkProb(N(t)> j forall to<.t<.to+S) (Al l )  

Here is why: 

(a) I f j  # k, then aj(to) and a~(to + s) are uncorrelated. [They are not 
independent, since a j ( to )#0  makes it more likely that a~(to + s ) # 0 ;  but 
the direction of aj(to) has no effect on that of ak(to + s).] 

(b) I f j = k  and N(t)>j  for all t e  [to, t 0 + s ] ,  then aj(to)=ak(to+S) 
and hence aj(to) - ak(t o + s) = 1. 

(c) If j = k  and N(to)<j, then aj(to)'ak(to+s)=O. Likewise if 
N(to + s) < j. 

(d) Finally, i f j  = k and N(t) < j for some t s (to, to + s), then the j t h  
bond was destroyed at time t. When it is later recreated, it will be done in a 
random direction, independent of the past history. Thus, the expectation 
value of ai(to ) - ak(to + s), conditional on {N(t) < j for some t E (t o, t o + s)}, 
is zero. 

Now the probability in (All) ,  conditional on N(to), is just the 
probability of nonabsorption through time s in a random walk with drift 
on the nonnegative integers with absorbing barrier at the origin, given the 
initial position N( to ) - j+  1. This probability has also been calculated by 
Shenton [Ref. 103, Eq. (18)]: it is zero if N(to)<j, and otherwise it is 

~2(Pw)ts 1 (~_~m/2 f,~ sin_~ sin m4, (cos ~F d4 ' 
TC \Wf f  20 1 - -  2(t~W) 1/2 COS 

(A12) 
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where m -  N ( t o ) - j  + 1. This quantity then has to be averaged with respect 
to the stationary distribution (A3) for N(to). The result is 

(aj(to) ak(t0 +s)) (~jk[2(vw)l/2]s+l(w~ j 1/2 

�9 = ( v - w )  
7~ \ v /  

sin 2 ~b (cos ~b) s g 
x Jo [1 - ~ - v ~ v ~ b ]  2 d~b (A13) 

The leading exponential behavior as s ~ oo is given again by (A7). 

A P P E N D I X  B. P R O O F  OF T H E  S P E C T R A L  
R E P R E S E N T A T I O N  (4 .14 )  

Let {Xo, Jr1,.-.} be a Markov chain with finite or countably infinite 
state space S, and transition probabilities p i j - p ( i ~ j ) .  We assume that 
this Markov chain is ergodic, i.e., for each pair i, j r S there exists n > 0 
such that n!n~ > O. [Here n!n) are the matrix elements of pn, the nth power f l y  r U 

of the matrix P =  {p~j}.] We further assume that the Markov chain is 
reversible, i.e., there exists a probability vector n = {~i} such that 

7 z i p  O- -= 7 z j p j i  (B1) 

for all i, j ~  S. Such a probability vector rc is necessarily a stationary dis- 
tribution for P [to see this, just sum (B1) over i]; by ergodicity, it is the 
unique stationary distribution for P, and is strictly positive. We assume 
henceforth that the Markov chain is started in this stationary distribution. 

Now let A be a real-valued function defined on the state space S, and 
let At -A(J f t ) ;  by assumption, {At} is a stationary stochastic process. Its 
mean value is 

#A = (At> = ~ r~A(i) (B2) 
i r  

Its second moment is 

(AtAt+,>= ~ 2riA(i) P~S)A(j) 
i , j ~  S 

[s~>0] 
(B3) 

and hence its autocorrelation function is 

CAA(S) = <At; At+s> =- ( A t A t + s > -  #2A 

= • A(i)['~iPbSl--2zi2zj]A(j) 
i , j r  

[-s ~> O] (B4) 
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We assume that #A and CAA(S) are finite. Define now the matrix Q = {q~} 
by 

qij = ~/2 po~j- m (B5) 

Q obviously has nonnegative entries; it is irreducible [by ergodicity] and 
symmetric [by (B1)]. Q has the strictly positive eigenvector 
v=  {re} = {rc]/2} with eigenvalue 1. Note that v lies in the Hilbert space 
/2(S) and has norm 1, i.e., Ilvll - ( ~ i  IVi]2) 1/2 = 1. Moreover, for any vector 
x e 12(S) we have 

IIQx}I2= IIQTxII2~- ~ ~i X i ~ ] / 2 p i J T C i l / 2  2 

j i / ' ,  l 

= ~ Ix,12 pu (B6) 
i,j 

= ~  Ixil ~ 
i 

= I[xil 2 

by the Schwarz inequality, hence Q is a contraction operator on /2 (S ) .  Let 
now E be the orthogonal projection in 12(S) onto the one-dimensional sub- 
space spanned by v; its matrix elements are 

eij = v ivy = T c ] / 2 ~ ) / 2  (B7) 

Note that EQ = QE= E. Thus, the operator 

R (s)-  ( l - E )  Q s ( 1 - E ) =  Q S _ E  (B8) 

has matrix elements 

r(~ ) = a{~)- 7[~ /2~ ) /2  - -  1/2 (s) 1/2 1/2 1/2 - 7z i p~ ~j - 7r i ~) (B9) tj -1U 

Combining (B4) and (B9) and applying the spectral theorem to the self- 
adjoint contraction operator Q, we conclude that 

CAA(S) = ~ [Tz)/ZA(i)] r~S)[7~)/2A(j)] 
i , j ~ S  

= ~ {Tz~/2[A( i ) -  #A]} q~){rc)/~[A(J)- #A] } 
i, j e  S 

= I x  ~H @,(x) 

(BIO) 
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where dpl(2) is a positive measure on [ - 1 ,  1]. [Note that the vector 
w = {wi} = {~/2[A(i) -  #A]} must lie in l 2 if we are to have CAA(O)< 00.] 
This proves (4.14a); the change of variables a = - l o g  [21 yields (4.14b). 23 

It is interesting to note the following additional facts: 

(a) The matrix P (and hence also Q) is either aperiodic or else of 
period 2. 

(b) 1 is a nondegenerate eigenvalue of Q [-considered always as an 
operator on/2(S)] .  

(c) - 1 is an eigenvalue of Q if and only if Q has period 2. In that 
case the eigenvalue is nondegenerate. 

(d) If Q is aperiodic and the state space S is finite, then the measure 
do1(2 ) is actually supported in some interval [ - 2 " ,  2*] with 2* < 1. If S is 
infinite, then 2" < 1 and 2" = 1 are both possible. 

Part (a) is an immediate consequence of (B1). (b) and (c) are con- 
sequences of the Perron-Frobenius theory for countable stochastic (or 
more generally, nonnegative) matrices; see Ref. 105, Theorem 1; Ref. 106, 
Lemma 5.5 and Theorem 7.1; or Ref. 107, Theorem2.2.  (d) is an 
immediate consequence of (b) and (c). 

The ideas in this Appendix go back at least to Nelson (mS) and 
Kendall, ~176176 and probably much farther; see also Ref. 104, p. 58, exer- 
cise 3.19. Further references and generalizations can be found in Ref. 111. 

APPENDIX C. P R O G R A M M I N G  CONSIDERATIONS 

The only nonobvious aspect of our computer program is the data 
structure employed to store the walk configuration and to check the self- 
avoidance constraint. 

If the walk configuration were stored only as a sequentially allocated 
linear list, then this list would have to be searched every time a AN= +1 
move is proposed, in order to check the self-avoidance constraint. But 
searching a linear list of N elements requires an average time of order N. 
For  our purposes this is a disaster: it would nullify almost all of our 
algorithm's advantage as shown in Table I. 

Our solution is the following: We maintain two data structures to 
store the current walk configuration: a linear list, and a "bit map." Both 
are updated at each iteration of the algorithm. The linear list contains the 
coordinates of points visited by the walk, in order; a pointer to the end of 
this list (i.e., to the walk endpoint) is maintained at all times. The bit map 

23 Here we define 0 ~ 1 7 6  There could be a contribution in (B10)/(4.14) from 2 = 0  
(a = oo), if 0 is an eigenvalue of Q. 
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is a large block of memory in which each site of a large spatial box (in our 
case 1024 x 1024) is assigned one bit: that bit is set to 1 if the site is visited 
by some step of the walk, and 0 otherwise. Thus, the checking of the self- 
avoidance constraint is rapid: one simply calculates the location of the 
relevant bit and examines it. In particular, the time is of order 1, i.e., 
independent of N. (We further speeded up this process by using in the bit 
map only 32 bits each 60-bit Cyber word: then calculation of the word and 
bit addresses requires only shifts and logical ANDs, i.e., no divisions.) This 
bit map does in principle impose periodic boundary conditions for the pur- 
pose of the self-avoidance checking; but in fact the box is so large that its 
boundary is never touched during the entire simulation, so the result is 
rigorously equivalent to simulating SAWs on an infinite lattice. 

In dimension d>2 ,  the bit map would become prohibitively large 
(unless virtual memory is used). In that case one must use instead a "hash- 
coding" method. (112~ The search time is still of order 1, provided that the 
hash table does not become nearly full. 

The bit-map method has been used previously in several SAW MC 
studies(~13 Hs~; likewise for the hash-coding methodJ 116A17) 

All our programs are written in FORTRAN 5 ( ~  FORTRAN 77) for the 
Cyber 170-730 with NOS 2.1 operating system, and are compiled at 
optimization level O P T = 2 .  The SAW-generation program required 
approximately 27 #s CPU time per MC step. (This has recently been 
improved to approximately 22 #s.) Our programs are available on request. 
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